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Heat Transfer o f  an Evaporat ing Liquid  on  a Hor izonta l  Plate 

S a n g  W o o  Joo,  M i n  Soo  Park* ,  M i n  Suk  Kim 
School o f  Mechanical Engineering, Yeungnam University, 

Gyongsan, 712- 749, Korea 

We consider a horizontal static liquid layer on a planar solid boundary. The layer is evap- 
orating when the plate is heated. Vapor recoil and thermo-capillary are discussed along with the 
effect of  mass loss and vapor convection due to evaporating liquid and non-equilibrium 
thermodynamic effects. These coupled systems of equations are reduced to a single evolution 
equation for the local thickness o f  the liquid layer by using a long-wave asymptotics. The partial 
differential equation is solved numerically. 
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1. Introduction 

A liquid layer lies on a planar solid plate in 
Fig. 1. There is a mode of  instability present when 

the layer is thin which is driven, even in a static 
layer, and results in the rupture of the layer. Such 

a film possesses a difference in chemical potential 
w,th respect to a large phase of the same materials 
resulting in a corresponding change in all inten- 

sive thermodynamic properties. 
The problem of finding the film thickness which 

becomes unstable owing to Van der Waals forces 
was considered by Vrij (1966). He used a static 
stability analysis to calculate a marginally stable 

thickness at which small disturbances start to 
grow. A dynamics linear stability theory for an 
isothermal film on a horizontal plate (Rukens- 

tein, 1974) based on the Navier-Stokes equations 
modified with an extra body force due to Van der 
Waals attractions. It shows that an initial dis- 

turbance periodic along the bounding plane has a 
critical wavelength much larger than the mean 
depth of the layer. Gummerman (1975) examined 

the linear stability of radically bounded thinning 
fi'ce films for which the base state is a time- 
dependent drainage flow computed by lubrication 
theory. Williams (1982) posed a nonlinear sta- 
bility based on the long-wave nature of  the re- 
sponse. They derived a partial differential equa- 

tion describing the evolution of  the interfaced 

shape subject to surface tension and viscous force. 
Davis (1983) discussed the generalization of  the 

result to a non-volatile film on a heated plate, 
accounting for thermo-capillary and gravity wave 

effects. 
This study considers the previous work condi- 

tions as thin liquid stales on the heated solid plate 

and as the transition of  phase is motivated due 

to evaporating, not due to boiling. As the time 
becomes large, the liquid comes to be evaporat- 

ing, and the evaporating liquid motivates con- 

vection in the vapor. In this study, we are going 
to consider three-coupled phases for heat trans- 
fer with the governing equations and their bound- 

ary conditions, obtain the equations for surface 
displacement by the long-wave asymptotics, and 
apply for the approximation method and numeri- 
cal raethod to understand liquid film behavior. 

2. Mathemat ica l  Model  

2.1 Theoretical Analysis 
The basic concept of  the evaporating liquid 

on a horizontal plate is established in Fig. l, 
where it can be assumed that a liquid layer is 
thin enough that gravity effects are negligible, 
but thick enough that a continuum theory of  the 
liquid is applicable. The liquid layer exists over 

the solid plate that has dimensionless thickness 
db, and a vapor layer contacts over the liquid. It 
can be defined that coordination is x - - z  direc- 

Fig. 1 
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lion, the corresponding velocity is i~----P(u, w), 
mass flux is ] = (x, t ) ,  and temperature is T = T 
(x, t).  At z = D  we assume the vapor tempera- 
ture might be maintained to the constant temper- 
ature due to water pipe, and at z - - - d e  the source 
temperature at the bottom of the solid plate might 
be maintained to a constant temperature that is 
bigger than Tsar. The interface between liquid 
and vapor can be located in z = h ( x ,  t) and the 
evaporation occurs in a direction normal to the 
interface. The other physical configurations are 
introduced in Fig. 1. In solid plate the conduction 
can be applied. In liquid layer the conduction can 
be applied, but the convection can be ignored due 
to the film-like thickness of liquid. In the vapor 
layer the conduction, the convection and the ra- 
diation are considered. The unit vector ~ and t" 
are the outward normal and tangential direction 

as, respectively, 

~= (-hx, I) (I + h ] ) - ~ '  
[ =  (I, h,) (I + ~ ) - ' " ~  (J) 

In Fig. 1, the normal vector is up to vapor di- 
rection for moving boundary problem for which 
the three phases interact with the variation of 
displacement and time. Thus, it can be called 
Multi-Phase, Free-Boundary Problem. 

We need the three governing equations in the 
liquid and in the vapor and the energy equation 
in the solid as 

ux+ w.=O. u f  + w#=O (2) 

p" ( Pl'+ ~ ' .v~ ~) = -vp+/~v2~ 
(3) 

T,=xV=T,  T~---xVV~TV, T /=xSVZT  s (4) 

We also need the boundary conditions such as 
the temperature boundary condition at z = - d e ,  
the temperature boundary condition and energy 
balance at z=O, the continuous temperature 
condition at z----D, and the continuous tempera- 
ture condition, jump mass balance, jump energy 
balance, normal-stress boundary condition, and 
share-stress boundary condition at z = h ( x ,  t) 

referred to Delhaye (1974). They are, respective- 

ly, 

At z = - d e  

At z=O 

At z = D  

At Z-~h(X, t) 

T s =  Te (5) 

T ' =  T,  kST~S=k T,  (6) 

T n-- To (7) 

T-- T v ($) 

f = p ( ~ -  ~') • n = p ( D v -  ~ t) "n (9) 

+ k V T .  ~ - k V V T  ~. ~+h, (  T~l,.h - T° I,.,,) (1o) 

+2/z(~.~) .  ( ~ -  ~') - 2 / ~ ( f . ~ ) .  (~v_ ~z) =0 

i(~-~ ~) • ~- (f- ~). ~. ~--2A. ~,~(T) (It) 

I(~--~) -/'- ( f- f~) .~.[=-V~./" (12) 

We assume no slip condition at the interface 
between the two viscous fluids as (~--i~ v) -[----0. 

The linearized constitutive equation derived 
from Kinetic theory of Palmer (1976) is shown as 

_ [ ap"L \ ( M.. \L'z I T z ~ 
--~"~'~1~1~ 2---~-~# ] x - -  s..t, (13) 

It relates the mass flux (jr) to the local surface 
temperature ( T t ) ,  where Mw is the molecular 
weight, Rsr is the universal gas constant, and a, 
is the accommodation coefficient. We should 
consider another constitutive equation for the 
effect of  density variation that is related to the 
convection in vapor. This is because we do not 
ignore the convective effect ignored by Burelbach 
(1988) in corresponding to the evapora{ing liq- 
uid. It can be shown as 

W ~= P - - P * '  U ! (14) 
P 

2.2 Dimensionless equations 
To make the governing equations and bound- 

ary conditions dimensionless, the scale of length 
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should be considered as the relation to thickness 
of vapor and liquid with the length (D). So, we 

can scale the length, the time, the velocity and the 
pressure with, respectively, D, DZ/v, v/D, pvz/ 
D, where v is kinematic viscosity of the liquid. 

The temperature can be scaled as A T =  Tb-- T~t. 

The mass flux can be scaled as its initial value 
for a linear temperature profile across an initially 
flat film r A T / D L .  Therefore, the dimensionless 
variables of velocity, temperature, and pressure 

for each phase can be obtained as 

,5,',5, .°, 

T ~ -  T.ot T '= T -  T.~t 
T~'= A T  " A T  

(17) 
T * -  T, at 

T~= A T  

With the scaled variables, Eqs. (2)~ (4) are 

changed as, respectively, (the dimensionless vari- 
ables are marked with Apostrophe. From now 

they should be marked without Apostrophe for 
convenience.) 

u,~ + w~--Oux+ wz=O ( ] 8) 

D, (i~'+ ~-V~v)  - - -Vp~+WV ~ 
(19) 

~t+ ~-V~=-Vp+VZ~ 

Pr( T~' + ~"'V T ~) =F~T,.~ 
(20) 

Pr T, f T,.~. Pr T: - -F ,  TA 

The boundary condition at z~---db is 

TS=l  (21) 

At z----0, the no-slip condition, the no-penetra- 
tion condition, the continuum for temperature 
and thermal flux can be obtained as, respectively, 

u----0, w----O, T ' =  T, R ,  T I=  T, (22) 

At z = | the temporal temperature condition can 
be obtained as 

TV=O (23) 

At z = h ( x ,  t) we need the constitutive equations 
related to mass balance condition, energy equi- 
librium, normal stress equilibrium, shear stress 

equilibrium, viscous condition, continuous tem- 
perature condition, and evaporation condition. 
These interracial conditions were introduced 
by Delhaye (1974), and Burelbach (1988) rear- 
ranged these conditions step by step. The contin- 

uous temperature condition is 

T---- T v (24) 

The mass balance condition is 

E I = ( ~ = ~  ~) • n = D, ( ~ -  i~ t) -n (25) 

The energy balance condition is 

E ~ 
I +--£-E(D,,-t) I'+AT.~ 

- R,,V T~. ~ + H ( T" I,=h - T~ I,.~,) 
2 ~ (26) 

+-L-r(r-~) " ( 0-~') I 

2D~ ( f . h ) .  (~v_ i~ t ) l=  0 
L" 

In Eq. (25) the first term means the needed energy 
for the evaporation, the second term means the 

transformation of momentum energy of evap- 
orated molecular, the third and forth term means 
the pure thermal flux due to conduction,'the fifth 
term is for thermal flux due to the radiation, and 
the sixth and seventh term are for dispersion due 

to viscosity. The normal stress is 

(I-Dp)E~fl+p-2~.n.n-ff ' (27) 
- 2 ~ . ~ . n = S [ I - C T ] V . ~  

We assume that the vapor and the liquid are in- 
compressible Newtonian fluids. The stress ten- 
sor (T)  is written as T----p~C-l-2/.tf. Surface ten- 

sion is represented by a linear equation of state, 
t r = t r o - y ( T  t -  Tsar). For common liquids y =  

- d a / d T  are positive. The shear stress condition 
at is 

~ .  ~. r -  ~ .  ~- f =  --~-r V T./" (28) 

Eqs. (I3) and (14) can be changed as, respec- 
tively 

K ]  = T, w v-- (1 - D , )  i~ t (29) 

The evaporation equation related to the evap- 
oration and condensation at interface with non- 
equilibrium is introduced by Seharge (I953) 
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showing the evaporation model Eq. (28) expres- 
sing the linearized equations related to the amount 
of evaporation and dimensionless temperature 
in case that there is less non-equilibrium rate, 
where the parameter K measures the degree of 
non-equilibrium at the evaporating interface. If 
K = 0  it corresponds to the quasi-equilibrium 
limit, where the interracial temperature is con- 
stant and equal to the saturation value ( T = 0 ) .  
K-~=0 means the non-volatile case in which the 
evaporative mass flux is zero. The equilibrium 
state is predictable t'or f = O  in the Eq. (28) 
when T = 0 .  If T > 0 ,  J > 0  (the evaporation 
state). If T < 0 ,  I < 0  (the condensation state). 
Some dimensionless parameters produced in Ap- 
pendix A. 

In component form, the scaled governing sys- 
tem is as following 

The continuity equations are 

Ux+W,----O (30) 

u~+w~=0 (31) 

The momentum equations are 

ut+uux+wu~t=--P.+u~+uzz (32) 

w t + u w x + w w . = - p . + w ~ + w ~  (33) 

D,(u~ +u~u~,+w~uD=-p~ +U~x+U~, (34) 

D, ( w~ + u~ w~, + wV w~) = - p~ + w g, + w~ (35) 

The energy equations are 

Pr( Tt = u T x + w T , )  = Tx,,+ T,~ (36) 

Pr( T :  +uVT~ +wVT~) =l'v( T ~ +  T~) (37) 

Pr T : = F c  ( T.~x + TA ) (38) 

The boundary conditions Eqs. (21)~(24) are 
not changed. Eqs. (25)~ (28) are changed, re- 
spectively, as 

E l f ( - - h , - - u h : + w )  (I +h[) -'2 (39) 

I + 2-~-c(D,-,)I* 
+ (1 + h~)-'12[ T,,hx- T , - R ' (  T ; -  T~-  T~h,) ] 
+ H [ ( T" h--a- T" I,-o) ] (40) 

21 [h,(u,+ wx) - (h~- I) u, 
-I L( l+h]) t  n 

- od~( u', + zoO) - ( ~ -  l) u:] =o 

(l-D,)E~p+p-2(l+£)-'[(g-t) ux-h,(u,+ w,)] 
-pv+2D~. (~ +~)"[(~-I) u~-hx(u~+ w~)] 
= S[ I-CT]LAI + g ) " '  

(1-h~) (u, + wx) -4h~u~ 
- D , [  (I-h~) (u:+w~) -4h~u~] 

= - p-~-( T x +  T in )  ( I + h~) ,/2 

(41) 

(42) 

Eq. (29) are changed as, respectively, 

K,/----T, wV-- (I-D,) ht (43) 

3. Solutions of Approximation 
Method 

3.1 Basic state solutions 
The state of the evaporation depends on time 

because liquid and vapor is on the state of evap- 
oration, and we can consider the assumption that 
the velocity of evaporation exists only z-direction 
and there is no velocity in liquid and fiat status of 
the liquid surface. We note that basic state quan- 
tities by 'overbar' and rescales time on the evap- 
orative time scale to retain the effect of mass loss 
in the kinematic condition as 

Rv=ERv,  Do=E-ZD,, t '=Et ,  z '=z  (44) 

The dependent variables are expended in powers 
of E :  

~'°ffiE-~(ToV+ET/'+EZT/'+...) (45) 

T =  T~+ ET~+ EZTz+ ... (46) 

~: ~ = TJ + E T:  + E2 T2S + . . . (47) 

]'=A +Eli + E'J2+"" (48) 

t~V= E-~(wg + Ew~ + E'w2V + ...) (49) 

~=E-'(Po+ Ept+ E~p2+ ...) (50) 

:"=p~ + Ep'; + EZp/' + ... (51) 

The momentum equations of the liquid and vapor 
can be obtained as, respectively, 

poe=0, D,p~z,= 0 (52) 

The energy equations of the liquid, vapor and 
sogid can be obtained as, respectively, 
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TO,,T=0, Prw~7~,,=TO~,:, TO~,----0 (53) 

The boundary conditions can be obtained as 

T0*=l at 2'~---d# (54) 

To s= To, R, TO~, = TO~, at ~----0 (55) 

TOv----O at z ' = l  (56) 

The continuous temperature condition, mass bal- 
ance, energy balance and two constitutive 
equations at z '=/Y(t ' )  can be shown as, respec- 
tively, 

TO~=0,/o=-/;~ 

]o+ TO,,-R~TOV+H( To- O) =0 (57) 

KA= To, wg=-B~h~ 

To obtain the effect of the conduction and con- 
vection in vapor phase, the second order of the 
perturbed equation is needed. For the second 
order, the Navier-Stokes equation for the liquid 
and the vapor can be obtained as, respectively, 

pw=O, DapEr=o (58) 

The energy equation for the liquid, vapor and 
solid can be obtained as, respectively, 

Pr Tw~,=O, Tt~,~---~wgTt~=O, T~%.,.=0 (59) 

The boundary conditions can be obtained as 

TlS----I at z '=--db (60) 

TI s =  T ,  RsTj~.--Tze at z ' - -0  (61) 

Tt ~-- @ at z '~- 1 (62) 

The continuous temperature condition, mass bal- 
ance, energy balance and two constitutive equa- 
tions at *'=h(t') can be shown as, respectively, 

TO= T~e, A=o  

]1+ T w - R v T g ,  + H (  T~- 6)) =0 (63) 

K/,  = Th w/'=0  

Second order equations for more exact solution 
can be obtained from the same process introduc- 
ed above. With the initial conditions, t'=O, h= 
0.9, and the boundary conditions, the solution for 

basic state can be obtained as 

/~(t) -- [(0.9 d, ,2  31t2 db 
+K+--~ , ) -2EtJ  -K--~-~s (64) 

d, 2 112 
f ( t )  = [ ( 0 . 9 + K + ' ~ ,  ) - - 2 E t ]  (65) 

p,, II,z-R, lh II#lh(z+l) 
~z/ = ~ t  + R,(ea-e nh) (R,l12+dolI,) (66) 

?(z)-R, Ihz-[h Rd]enq],(R:+l) 
- Rs~--~-~-b[h I-E (67) R.(en-enhl {R, Ih+dblld 

( e n - e  nh) IIs 
T~(z) = (e._e. , )  (R,l'lz+ dd-h) (68) 

where I l ,  l I t ,  II2. l ' I ,  are in Appendix A. In the 
present work, the physical properties of  liquid. 
WATER, are used in the simulation. Detailed 
data are listed in Appendix A. 

3.2 Solutions of surface behavior by evolu- 
tion equation 

To obtain the evolution equation of represent- 
ing surface behavior, the ratio of the initial av- 
erage liquid thickness to frequency of the liquid 
wave is assumed to be very small, it is noted ~, 
and hence the assumption is allowed to apply 
for long-wave approximation which was worked 
by Oron (1997). There are rescaled-independent 
variables rearranged as 

~= ,x ,  ~'=z, r¢t (69) 

All independent variables are transformed for 
order except liquid thickness as Eqs. (86)-(95). 
Rearranging the variables to be functions of ~, S' 
and r, they are, for the vapor, 

u~f¢-~(u#+~u~+~u~+...) (70) 

wV=*- l (w~+~wg+~t~+ ''') (71) 

po__pg+rpf  + ~ / ~ + . . .  (72) 

TV = ~- '  ( ToY + ,  TrY + d Tz~ + ... ) (73) 

for the liquid, 

u :-  ~ ( Uo+ ~Ul + ~ u 2 + ' " )  (74) 

w=,(wo+¢w~+~Zu~+ ...) (75) 

p=e-~(Po+~/h+ ezpz+ ... ) (76) 

T =  TO+ET3+~7~+.-- (77) 
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and, for the solid, 

T'= To'+ ~ T{ + ~  T2*+--- (78) 

Mass flux can be expressed as 

f = J o +  e/ t  + ~zJz+"" (79) 

We also represent the following dimensionless 
parameters for including all the remaining physi- 
cal effect in this model as Pr=eP-"r, E = ¢ E ,  M =  

Over Bar indicates O(I). For the leading-order 
equations, all governing equations and boundary 
conditions are arranged by O(~) using with Eq. 
(69). Continuity equations for liquid and vapor 
can be obtained as, respectively, 

wocffi0, u,~'~ = 0  (80) 

Navier-stokes equation for liquid can be express- 
ed as 

p0~=0, ~c=o (81) 

Energy equations for liquid, vapor and solid can 
be expressed as, respectively, 

To~=O, -~v wo lo~ = To%, T~n (82) 

Boundary conditions can be obtained as 

To'=l at ~ ' = - d s  (83) 

womO, To'= To, RsT0% = Tot at ~----0 (84) 

T"=0 at ~=l (85) 

Boundary conditions for continuous temperature 
condition, mass balance, energy balance, normal 
stress balance and shear stress balance at ~'----h(~, 
r) can be obtained as, respectively, 

To~=0, E, fo--wo-h,, f , +  To~=/~To~ =0  

po=0, uo~=-~-r (T*' + TO~h~) 
(86) 

The two constitutive equations at ~'----h(~, r) can 
be expressed as, respectively, 

K/o = To, w~= - D , h ,  (87) 

The results of the first order equations can be 
obtained as 

h(r) =[( o.9+ K +--~s ) - 2 E r ] - ~ - K -  ~-~b a (88) 

( / 9 , -  l) ER, 
wg= R , ( K  + h) + d6 (89) 

R, (90) 
A=R, (K+h)  + d s  

7~, R , ( K +  h) - ~" = ' ~ + - ~ b  (91) 

R , ( K + h -  ~) 
To= R,(K+h) +rib (92) 

To ~ = 0  (93) 

Second order equations for more exact solution 
can be obtained from the same process introduced 
above. Thus the solution for long-wave approxi- 
mation can be obtained as 

T , , ,  R~-I l t (R,h+z)  

.~ Ih""{lh(R,h+db)O+R~K(O-l)}(z+l) 
R,(e"- e"h){ (H,(R~+&)) +Rd~} 

(94) 

R,K-RJh  (h+ z) 
T(z) = RJh+ddh 
-~ ER,,ilenh{1-h(do+R,h)O+Rdf(e_l)}(R,z+l ) (95) 

R , ( : - e  "h) ( lh  (R,h + d~) +PuK} 

To(z} ={[h(R, hO+&O) +K3~9}(e"~-: h) +KL(e"-e "~) (96) 
( e"- e~) { lll (R,h + &) +R~} 

The pressure, evaporation rate and evaporation 
velocities for liquid can be obtained as (cf. Ap- 
pendix A) 

P=G(h-z)  + R B D ' E 2  -Sh~= (97) 
(R,(K + h) + db) 2 

j=  R, 4 Rvrl enh(hRs+ db) (II~O- Rd¢) (98) 
(enh-en) [I~ 

l"[,~hx z ~ M R, 

nl 
I lLh,., M R, 

(ioo) 
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The evolution equation expressing surface behav- 

ior can be obtained as 

(101) 
/ '2D, RssE' F_~_) hShx]x= 0 

We need Finite Differential Method to solve the 
forth order nonlinear partial equation. It is solv- 

ed numerically in conservative form as part of  an 
initial-value problem for spatially periodic solu- 

tions on the fixed interval O<x<2zc/kM. Crank- 
Nicholson in time and central differences in space 
are employed. The difference equations are solved 
by Newton-Raphson method until e r ror<10 -s. 

The solution of  temperature distribution is pro- 
ceeded after solving Eq. (101). The initial state 
for these equations is 

h(x,  0 ) = 0 . 5 - 0 . 1  cos(k~x) ,  kM=2 -=12 (102) 

with the disturbance having the frequency 2zc/kM. 

4.  R e s u l t s  a n d  D i s c u s s i o n s  

4.1 Discussion for basic state 
Since the liquid on the heated plate is evap- 

orating, the basic state is time-dependent. The 

basic state is assumed to be static with a flat 
evaporating interface. Thus, there is no depen- 
dence of  the lateral coordination, and the basic- 
state velocity of the field is zero. When 6)=  1 at 
z = l  the water pipe temperature is equal to the 
solid temperature at bottom and when (9 = -  1 at 
z =  1 the water pipe temperature is as low as the 
difference between the solid temperature at bot- 
tom and the saturated temperature. When it is 
quasi-equilibrium evaporation ( K = 0 )  the tem- 
perature difference across the film is constant, so 
that the heat flux and the evaporation rate are 

expected to be larger where the film is thinner, 
and when it is non-equilibrium evaporation (K 
~0)  the interface temperature depends on the 
fluxes. 

Figure 2 shows the rate of  the height reduction 
in quasi-equilibrium evaporation is faster than that 
of  the height reduction in non-equilibrium case 
as the time becomes large. It means that Kmakes  

the evaporation velocity disturbed (cf. Bankoff, 
1971). Fig. 3 shows the variation of  mass flux in 

basic-state when ~9=1 at z = l .  The rate of  in- 
creasing mass loss from the liquid in the quasi- 
equilibrium evaporation is larger than that of  
increasing mass loss from the liquid in the non- 
equilibrium case. It can be resulted that the film 
is so thin that the heat from the solid plate is 

likely to accelerate evaporating velocity without 

increasing the temperature of  the liquid-vapor 
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Fig. 2 The variation of liquid thickness of basic 
state when ~9=1 at z = l .  Dimensionless 
thickness of liquid is initially 0.9 
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interface comparing with the non-equilibrium 

case. 
Figs. 4 and 5 show the variation of  temperature 

distribution of  basic-state with an instant film 

thickness (h---0.001, 0.05, 0.2, 0.4, 0.6, 0.8, and 
0.9) respectively when ~9=1 and ~9=--1 at z = l ,  

where the vertex of  the lines is the interface of 

the phases. As the time becomes large, the tem- 
perature through solid and liquid comes to in- 

crease, and the height of the liquid comes to 
decrease. The temperature at the interfaces comes 

to be lower than the previous state because the 
evaporative rate is increasing and the space be- 
tween the liquid-vapor interface and the water 

pipe becomes wider that it takes more time for the 
temperature to lose the energy to the surrounding. 
As Figs. 4 and 5 describe, two interfaces eventu- 

ally meet together in Fig. 6 showing the variation 
of the temperature of  two interfaces, 

4.2 Quasi-equilibrium evaporation ( K = 0 )  
In the case of  the quasi-equilibrium evapora- 

tion (K=O),  the surface temperature becomes 
constant because of  the disturbance in the film 

, ~ . ~  ;~'-~.. 

0.2S ~" ( 4 ) ~ ~  

o L . . . . . .  

.o25I (7) ~ ,  ' \ ~  

-0,75 
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Fig. 4 Variation of temperature distribution of basic 
state when ~9=1 at z = l .  Line (l), (2), (3), 
(4), (5), (6) and (7) state when instant film 
thickness (h) is 0.9 (initial value), 0.8, 0.6, 
0.4, 0.2, 0.05 and 0.001 respectively, where the 
bottom of solid plate at z = - - I ,  the top of 
solid plate is at z=0,  and the water pipe is at 
z = i  

evaporation phenomenon, and the mass flux and 
the evaporative effect are stronger in the thinner 
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The variation of temperature distribution of 
basic state when O=-- I  at z = l .  Line (I), 
(2), (3), (4), (5), (6) and (7) state when 
instant film thickness (h) is 0.9 (initial val- 
ue), 0.8, 0.6, 0.4, 0.2, 0.05 and 0.001 respec- 
tively, where the bottom of solid plate at 
g = - - l ,  the top of solid plate is at g----0, and 
the water pipe is at z = l 
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non-qt, asi equilibrium case, respectively. 
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film region. 
To obtain surface behavior in the quasi-equi- 

librium we set K = 0  in Eq. (101) and the result 

is 

(103) 
+( 2DpRSsE2 F_~_)eShx]x= 0 

3(R,h+db) 3 

The parametercan S be removed from Eq. (103) 
by rescaling with 

X=(1/S)~'zx, 0 = ( I / S )  t (104) 

Eq. (103) can be obtained as the canonical form ; 

ho+~] + l (h3hxxx) x 
(105) 

is an effect of  mass loss( :~=ES)  and ~ is an 
effect of vapor recoil (~lt=DpE2). Vapor recoil 

effect meets at 'Trough'  than 'Crest' in the film 
wave and results in being unstable. Let ~/=1 for 
~ = 0 ,  0.3, 0.6 and 1, respectively, figure the wave 

behavior. Fig. 7 shows that the mass loss is ex- 
pected to increase due to the effect of  the vapor 

coil, moreover it is shown that the larger the value 
of  :~ is the shorter the rupture time (0r) is. Let 
2~=1 for ~ = 0 ,  0.3 and I, respectively, figure the 

film wave profile. It is clear that the larger the 
value of  the vapor coil is, the shorter the rupture 

time. However the effect to the reduction of the 
rupture time (Or) becomes less than the previous 

condition in Fig. 8. 

4.3 Non-equilibrium evaporation (K#:0)  
We now allow K ~ 0  from Eq. (101) for non- 

equilibrium evaporation. In this case the temper- 
ature of  the interface depends on the flux. We can 

rescale it with Eq. (104) and obtain non-equilib- 
rium evaporation equation form as 

ho+~] +[3 h3hxxx]x 

[ / R ] K  \ 2 2R 3, G 3 -0  (106) 

The term proportional to f~ ( = M  Pr -1) repre- 

sented the thermocapillary effect can be obtain- 
ed. The profiles for the non-equilibrium evapo- 
ration can be obtained in the following. Fig. 9 

shows the variation of  rupture time for the non- 
equilibrium as K varies. Let ~=0.1 ,  ~ =  1, fl = 0  
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The variation of rupture time for quasi-equi- 
librium evaporation as ~ varies when ~=1.  
Lines are for 0r=0.389(~=1), 0r=0.628 
(2~=0.6), e=1.15(~=0.3) and 8r=5.58(~ = 
0) from the left. Initial value of liquid thick- 
hess (h) is 0.9 
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Fig. 8 The variation of rupture time for quasi- 
equilibrium evaporation as • varies when 
5=1.  Lines are 0r=0.389(~=1), 0r=0.40 
(~=0.6), 0r=0.4027(~=0.3) and 0,.=0.4082 
(~/=0) for from the left. Initial value of 
liquid thickness (h) is 0.9 
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for K = 0 ,  0,3, 0.6, 0.9 1 and 10, respectively, make 

profiles for obtaining the film behavior, where 

oiL. 
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The variation of rupture time for non quasi- 
equilibrium evaporation as /{" varies when 

5=0.1, 5=1 ,  f2 =0. Lines are for 8r=2.437 
(K=0),  8r=6.33(K=0.3), 0~=9.37(K=0.6), 
8~ = 12.96(K=0.9), 8~ = 14.02(K=!.0) and 
Or = 104.98(K=10) from the left. Initial val- 
ue of liquid thickness (h) is 0.9 
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Fig. 10 The variation of rupture time for non quasi- 
equilibrium evaporation as fl varies when 
5=0 ,  3 = 1 ,  k=0.1. Lines are for 8r=3.69 
(f~=10), Or=10.19(~=0), O~=10.41(f~= 
0.9), 8r=l l .10(f l=0.6) ,  6r----11.90(Q=0.3) 
and Or= 12.836( Q =0) from the left. Initial 
value of liquid thickness (h) is 0.9 

~ = M P r  -1 is the modified thermocapillarity. It 

is shown that the larger the value of  K is, the 

longer rupture time is, and if K - - * c o  and 0r 

co, the result is produced like being isothermal. 

Fig. 10 shows the variation of  rupture time 

for the non-equil ibr ium as fl varies. Let ~=0 .1 ,  

~ = 1 ,  K = 0 . 1 ,  for Q = 0 ,  0,3, 0.6, 0.9 i and 10, 

respectively, make profiles for obtaining the film 

behavior. It is resulted that the larger the value of  

Q is, the shorter rupture time is in the case of  

which the Non-equi l ibr ium offset is small, more- 

over the vapor coil effect is considerable and the 

effect of  the thermocapiilarity is increasing. It can 

be expected how important the thermocapillarity 
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Fig. 11 Temperature of distribution at the rupture 

time when (a) 0 = 1  (at z = l )  and (b) 
O = - I  (at z = l )  with K ~ 0 .  Where the 
bottom of solid plate at z = - - I ,  the top of 
solid plate is at z=0,  and the water pipe is 
at Z = 1 



1660 Sang Woo Joo, Min Soo Park and Min Suk Kim 

is for rupture time. 

4.4 T e m p e r a t u r e  d is tr ibut ion 

Fig. 11 for the rupture time shows the tempera- 
ture distribution when O-~1 and O------1 at z---- 
I with K:~0,  respectively. In both of them each 
phases can be distinguished. The solid is at z < 0 ,  
the liquid look like a hill with the crest at each 
sides and the trough at the center and the vapor is 
above the liquid. In the rupture time it can be 
observed that the rapid evaporation and its heat 
from the convection of vapor increases the tem- 
perature of  vapor near the trough while the tem- 
perature of the solid plate locally decreases due to 
the heat loss to the trough shown in Fig. I I. it can 
make the unstable wave and different heat flux 
transferred. 

5. Conclusions 

We studied the behavior of the film liquid 
evaporation heated constantly under the solid 
plate, and we also analyzed in detail the basic 
state solution of the film behavior and the evolu- 
tion equation expressing the film liquid motion 
containing the steep nonlinear characteristic with 
considering long wave disturbance in Eq. (101). 
The equation contains several physical factors 
such as the effect of  vapor convection, mass loss, 
vapor recoil, thermocapillarity surface tension, 
and viscosity. Other authors (Burelbach, 1988; 
Panzarella, 2000) didn't show the effect of vapor 
convection in the system, and they were interested 
in only the behavior of the liquid-vapor interface. 

They are important factors affecting to the ex- 
pression of the behavior of the liquid film while 
the liquid film becomes thin evaporating at the 
liquid surface. Therefore, the interfacial tempera- 
ture becomes unstable for the effect of the ther- 
mocapillary under the non-equilibrium evapora- 
tion. It results in the reduction of the mass loss 
rate and the reduction of the vapor recoil effect 
because of the increase of  the liquid surface tem- 
perature heated from the solid plate as the film 
becomes thin. We also discussed the variation of 
solid, liquid and vapor temperature as the time 
becomes large. The convective effect in the vapor 

can be observed when 0----1 and 0------1 at z----l. 
The temperature distribution around trough in 
case of  0---I  at z---I is different from the case of 
0 = - - 1  at z = l .  It can be also shown that the 
high temperature resulted from less evaporation, 
while the low temperature was from more evap- 
orating to the vapor. These physical phenomena 
make the liquid film behavior unstable. 
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7. Appendix A 

7.1 
Dimensionless parameters in this paper 

Pr---- G =  D._=-PZ- D ~ = - -  D~g 
v p v 

X s t¢v k 8 

fi=T r~=T R+=T 
k~ 

R~ = T  

E - - k A T  H = D h r  
- p v L  k 
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aDp"L ~ /~ Mw ] 

D,,='~" L ' -  D2L S aoD 

M = ~'A T D  0 • T o -  Te,,, 
2pyre A T  

C=rAT 
oo 

7.2 
The physical properties of liquid, WATER. are 

used in the simulation. Detailed data are listed in 
the following. A dimensionless parameter can be 
combined with them 

D=0.1 × 10-S(m) 

p----960 (kg/m s ) 

v=0.3 × lO-6(m2/s) 

k--0.681 (W/mK) 

k*ffi2o( W/mlO 
K=0.17 X 10-e(m2/s) 

Mw---- 10 (kg/kmol) 

A T = I 0 ( K )  

pV=0.6 (kg/m3) 

re----0.21 X 10-4(m2/s) 

k v =0.681 (W/InK) 

L = 226 × 104 (J/kg) 

xv----0.24 X 10 -4 (m2/$) 

R,=8314 

00ffi0.0059 Teat = 373 (K) 

7----0,18 X 10 -3 Pr----- I 

D~ffi 1600 Rv=0.3 × I0 -3 

P, ffi 120 R ,=20  

E=0.01 H=0.3  x 10 -4 

K=0.08 S = 10 

C=0.1 M--10 

7.3 
I-L ]'L, ]'12, I-G, 1"I, and ]'Is are 

H=" P r ( D , - l ) R ~  
(R~H,+dbH,)/TM 

H ~ = H K + I  

I'I2=HKh+ K + h 

l'Is = O (Rarl2 + d d l  t) - R j K  

I-[,=Rs(K+ h) +de, 

IIs=2DH?;E 2 




